Absolute Quantification of EGFR Activation and Resistance Mutations by Droplet Digital PCR in Circulating Nucleic Acids

Objective:
- To design a methodology for the detection of EGFR mutations in plasma samples.
- To evaluate the performance of droplet digital PCR (ddPCR) for the detection of EGFR T790M and L858R mutations.

Methods:
- Used droplet PCR technology to analyze plasma samples from a variety of sources (NSCLC, colorectal cancer, healthy donors).
- Employed a Bio-Rad proprietary ddPCR mix for amplification.
- Analyzed plasma samples for EGFR T790M mutations.
- Established ddPCR methodology for detection and quantification of EGFR mutations in plasma.

Results:
- ddPCR data was compared with qPCR data for accuracy.
- LLOD for the EGFR T790M, L858R, and Exon 19 del mutation assays.
- ddPCR data validated by qPCR, showing high sensitivity and specificity.

Conclusion:
- ddPCR is a powerful tool for the detection of EGFR mutations in plasma, offering high sensitivity and specificity for clinical applications.

Figure 1: Figure 1: Droplet Digital PCR – Rare Mutant DNA in Plasma

Well as EGFR wild type colorectal cancer and healthy donor plasma samples were analyzed.

Figure 2: Figure 2: ddPCR Methodology and Sample Set as used in Figure 4.

To enable detection of mutations within the same sample.

Figure 3: Figure 3: The LLOD for the T790M assay was ~1.2% which is greater than the LLOD in any specimen, and all had 95% confidence interval for no template controls.

Figure 4: Figure 4: ddPCR data compared to those generated with the blinded NSCLC.

For further information, please contact info@molecularmd.com or visit www.molecularmd.com.